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Eric S. Tollar

Abs tract

For many storage models defined on some semi-Markov process X(t), the

asymptotic distribution of the imbedded discrete time process can often be

determined by exploiting the properties of the dual of the underlying

N.arkov chain Xn which effectively reverses the process. If this is the

case, a technique is given which under certain regularity conditions show.,s

the asymptotic distribution of the entire c.ntinucus tire process can be

obtained, and is equal to an altered version of the "reversed" discrete

tire process. It is shown this method not only can be aplied to models

where the asymptotic distrib.ution was previously unknown, but can also

improve upon characterizing many of the results for models in which the

asymptotic behavior is obtained by a renewal argument.
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1. INTRODUCTICN

In storage models, the concept of using an underlying Markov renewal

process to allov for some dependency of structure, as well as continuity

of time, has seen widespread usage. In such models, the investigation of

the limit behavior of the contents in storage as time tends to infinity

has always been one of the more important aspects of the model, and there

have been a wide variety of techniques used in the literature to determine

the limit behavior.

When the structure is such that the amount in storage, when coupled

with the state of the underlying semi-Miarkov process, is itself a semi-

rlarkov process on some arbitrary state space, the general theory of semi-

Markov processes on arbitrary state spaces (for example, see Cinlar (1969),

Athreya, McDonald and Ney (1978a, 1978b), Athreya and Ney (1978), Kesten

(1974), and Nummelin (1978)) can be exploited. This technique was success-

fully exploited by Puri and Tollar (1985) to determine the limit behavior

of a popular storage model.

Another popular technique is to "reverse" the process by looking at

the dual "Iarkov renewal process (for a sumnary of the full power of the

dual process, see Kemeny, Snell and Knapp (1976)). While this method has

proven itself useful in the limit behavior in those cases where the con-

tents in storage require some normalization (see, for example, Puri and

Woolford (1981)), it has failed in those cases where no normalization

is required.

*"" . " '-- . - - - •'" - -.. . . . ... . ""'"....... . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In this paper, under certain assumptions on the definition of the

storage model, we present a technique which allows one to "reverse"

the continuous time process to obtain results in those cases where no

normalization is required. Because of the assumptions imposed on the

model, these results can also be considered as an extension of the

theory of semi-Markov processes on arbitrary state spaces (although

there is admittedly more structure on our state space than the pre-

viously cited authors prefer to allow).

Let J be a subset of the integers, and {Xn , n=O, 1, 2, ... } be

a stationary, irreducible, aperiodic, positive recurrent Nlarkov chain

with transition matrix P= (pij) for i, j j, and with stationary

measure 7. We then define times O-T O -T1 5T2... such that

{(X , T ), n=0, 1, 2, ... } is a MIarkov renewal process with semi-n n

:.arkov matrix A(t) = (.i(t)), *:!,re for i, j cJ, t-O0,

P(X = J, Tn Tni -tI To , XO, T1 , X1, .... Xn_ 1 i) =A ij(t)

(.see inlar (1P75) for details). For all icJ, define the expected

sojourn time in state i by

mi- r. td MIj~)
jEJ

and define the average sojourn time of the process by

1-

= r~im i  (1.1

U
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For all t2: 0, define the number of jumps by time t by

4-

:4(t) =sup {n: TS -t)

We define another Markov renewal process {(Xn, Tn)}, independent
n n

of {(Xn T)} with semi-Markov matrix A(t) = (A.. (t)) defined for each

i, j J by

Aij~t) = ].-.11i]()'"

and let X have initial distribution r.

Definition. {(Xn , Tn)1 as defined above is called the dual Markov
n n

renewal process of {(X , T )}, and {X } is called the dual Markov chain.n n n

Finally, for each i4J, wc associate a sequence of i.i.d. random

variables p1 (i). n=C, 1. 2, ... n} en so- aritrary st.'.te 9.-acc, vhere

{U n(i) is independent of {(X , Tn ) and {(X , T n)}, and nf all

{U (j)} for j xi. We then define tie contents in storage at jump n

recursively for some function f by

Zn (x) =f(Zn 1l(x), Un(Xn)), (1.2)

where Zo(X) =x.

Fr simplicity, we will assume the function f(-) is real-valued.

To define the arount in storage at time t, we let

Z(t) = ZN(t) (Z 0).

If we define a sequence of functions recrsively I-y

f ((x.Yly ) = f(f n 1 )(x'Y 1 , . y

n 2' n.l

21.
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we can represent Z (x) byy n

Zn(X) = f(n)(x; I(XI), UM)) Un(X)

Define Z (x) byn

Z (X) f(n)( U (Xv ) .

n n-I n - n -2 r 0

For convenience, let

(n)(n
(X; il'i2) ... 2 i n  nn( (il), (Unn2(i 2  ... ,Io(in (1.3)

Nete frc:r. Kereny.Snell and Knapp (1)76) that if X has initial dis-

tribution IT Z (X) = (x), for all -i.
- n n

We will assume throughout the paper the following condition on

the storage model of (1.2): for any arbitrary distribution of X09 for

each B >0, and c'ich E > 0, there is an N where for all n> N,

P( sup I Z (0) - Z (X) I> ) <C. (1.4)
nxI n

As such, the initial amount of the contents in .'c"',,. is ,"niformly

forgotten as n tends to infinity.

The importance of the condition ani the usefulness of the revers-

ibility in discrete time n can be seen from the following theorem.
,p

This theorem is stated without proof, for even though it is not explic-

itly stated in the literature, the techniques required to prove it are

well established (see for exam)le Puri and !Woolford (1981)).

K'-; . ,: . ., '. ".. -" . -- . , .".. .-.. .".". .- "" -- " -. """ " " "" "" ""v ."- '"v - -. -, .- . .- . --.-. ''



THEORE" 11I Jf co* tinr (1.4) is sqtisfied, then the

urn P(X = i. Z (x)!5y) exists for all x. and 'or all initial distributions
n-)m n n---__ ___

of X0 2 if in only if lip P (X0  i, Zn (0)!5y) exists, in which case for all

continuity points y of lim P(X0 = i. Zn (r) ! y), for all x, and all iE-J

lrn P(X i. Z (X) !5y) lim P(Y(,i , 2 (O)y5 ).

n-- n n n- fl

Therefore, in discrete time, one can either examine the original process

or the dual process, whichever is more convenient.

It is easy to sce that {X n Z2 (Z 0, T n is itself a 'arl~ov renewal

no1

process. However, the state space ef fX , 2 (Z ) need not he denumerable.

nn n

distribution as n tends to infinity, it noe not follow that {X(t), Z(t)}

converges in distribution. The substantial body o.1 1-.ork on semd.-M1arkov

processes on arbitrary state spaces cited4 previously is of little help

in proving what annears sh~ould he true: as long qs r, <- in (1.1), then

(Y ,Z ) converaing should imply {X(t), 2(t)) converaes.n. n

It will he shown in section 2 that under certain conditions a re-

versibility argument can be applied to letermine thn convercence in

distribution as time tends to i1rinity. ection thi then Oevoted to

applications of the results in section 2 to sore ex.in es or storae

rodels.

ortedaVrcs, ihvri oecnein•i.

Iti ayt e ht(X nI- n } i tef "ro eeql.,

procsst~o¢eve, te satespac e¢ {X, ZnZo) ned nt beden~erble
Theefreevn S i i .oss.l t es is that {X. Z} oner, s n

ditibto a enst infintyi n..... ot.... .".that .......... '2-

conve... .... .... ... .... .... .... ...Tes rko ....... v "
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2. THE REVERSIBILITY ARGUMENT

If B of (1.1) is finite, in addition to and independent of all the

random variables defined in section 1, let {X*, n =0, 1, . ..) be an

Markov chain with state space Jtransition probability for i, j EJ of

p. j P(X =j Ix ji)~'
Sn n-l j i ji'

and initial distribution of X given by
0

We also define Z (x) by
n

z*(x) f (n) (X; U X( ) )g (n) (X X xn n-l n-l .. ,( 0 ) (x; l n-2 0

as defined in (1.3). The relation between Z (x) and Z (x) is given in
n n

the theorem below.

THEOREM 2.1. For each r- 0 and each r> >0, there is an where for all

n >N,

n (S>C)E

In addition, if (XnZ (0)) converges in distribution, then (x*, Z(0))

converges in distribution.

PROOF. Let X have initial distribution -,and let K be a finite
0

subset of J, where both
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Ti >1- c and I 1T.m > -C

iEK icy

From (1.4), for B >0, c >0, we can select an N where for n>N,

P( sup I Z (0) - Z (x)! >e) <c min(Tri).
A <B icK

Then P( sup I Zn(0)- Zn (X) C') - [ P( sup IZn(O) -Zn(X) >CI X=i)B .n.
x1

- j P( sup z (0) - Z (x0)I >El X i ) B - i mi

iEJ ixI<P "

-1 -1 T 21. Ip( sup Zn(O) - Zn (X)I > .o=i)8-1.m.. (2.1) 0

From Kemeny, Snell and Knapo (1976). we have for i c Y,

P( sup I Zn n - Zn (X > C, X0 =i)

=P( sup I Zn(O) - Zn (x)l > C, X n i) < E min(,T)

Thus from (2.1) and the definition of K it follows that

P( sup I Zn (0) -Z (X) F < 7 E min(Tir )' .n. + E<2E.
Ix _ 1!B i ic Y

. &7



Also, again letting X0 have distribution -, we have from theorem 1.1

that (X , Z (0)) converging in distribution implies for all continuity

points of y,

lim P(X O = i, Z (0) !y) = P(X O = i, Z !5y), for some Z.

Therefore,

lia P(x = i, Z (0) f<y) lIr P(Z (0) SY y = i ) a IT. .

lir P(Z(O) < X0 =i)f - 1  P - m..

n--o n X

* * I
As such, we have shown that (X0, Zn(0)) converges in distribution. U

The fundamental lemma of this paver makes clear the relation

between {X n } and the behavior of the continuous time semi-Ptarkov process.

LUPIA 2.2. If g<o, then for any k>0

I r; P(X" xi,
t+ im (X y t )  -i0 , N(t) I il' , X : t . k

P(X 0 = 10, XI = il, ... , = k).

:.

.": - , " 2 2- . . -. .' •.. -- .- ... -' .- .-- 2 _12 , "- . .V :- ., _& , = ; .---.. -- -' . - -- .' . -- ' - .- _



-9-

PROOF. For a particular k, let us define a new tMarkov reneial process

{(Y , T ), n=-0, 1, ... )} with state space -

K= {(i-O ill ... I ik) J >0)I I P i2 i

by

P(Y n 00P I ' T n-T n tiY n-I (iop ill... I '0

k

1k k .C=l

As is apparent, {(Y ,T )is merely the Process [(X ,T )}with memoryn n n n
of the previous k states it has visited. Therefore, for N(t) >k,

Also, {Y Imust be aperiodic and irree-icihle, since {X }is. Finally,
ni n

letting

IT 0 on' . . k 'o j ~ 0 j 1 i - I 3k

we have that*

(i 0 , ijl..., i k)K n ' ' . 'k

P(Y n=iY (o l .
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As such, we have from Karlin and Taylor (1975) that Yn is positive re-

current with stationary measure w Therefore, from Cinlar (1975),

it follows that

lir P(X"(t )  =i k  x,(t )  Xk I O )-.- it- k:'- - 1) ... .M; t 0..

IT. -. 10. ."i

Tr~ 1 r
k k-' 1 )1 0 -,

(i ik i0 kI - 1 1 0 0

-1 r* .. t. .

k kk -1 10 0

The proof is completed once it is observed that

*(Q=iQ ~X = * - _ ', .. . . i. o V:
P(Xo io ... ' k k kIk-l I0 i 0

Thus %,,e see that in continuous tire, the r'arkov renewal process can in

a sense be reversed" to look like the dual Markov chain with a different

initial distribution.

From this lemma, we can establish the nain theorem of this paper.

TIM ORF(n 2.3. If Sn if C f (Z )) d -- (X, Z), and if for all> 0,

there is a B where for all k> 0 li-m 1 0 Z> ,) < , theaT L
t_- - \:(t) - l, z

lir P(X(t) i, Z(t) !y) l irn P(x 0 - i. Z (0) 5y), for all continuity_.ppnts v.
t 

n



PROOF. Let (X0, Z (0)) have liiting distribution (X0, Z) and let (i, y) be

a continuity point. For any c> 0, select a 7> 0 where lin P(1,(t)- -kI> ) <C,

*for all k. We know from theorem 2. 1 there is an NY W hr-re f or a 11 n> Y.

P ( sun) I Z n(x) - nZ(0) 1I> E) < C. (2.2)

* Select a k> Mwhere

IP(X=i, ZkO ~yc P(X0 =if Z 5 V+ C)I <E. (2.3)

(n)From the i.i.d. nature of (Ij (i)}, we can see that for g (x; i13**. ,
nfn

as defined in (1.3) that for all k

~ (k)

Therefore

* P(X !;(t) =~ N(t) !5y) P P(X ",(t) F, Rjk (ZN()-~ (t) -k +. 1'.. X(t)) y

= (k)
-5~ v i) , (Z,-;(t)- k' X ,:(t) - k + P'* X,,:t) !5YZ.,r.t) -k B,

+ P( sup Ig (x, X k X. g g'(0; Xi..I X, )1> a).

It) () k
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It is tlerecfor- cl.'r tInt

PCXN(t) =i Zt) - PCXX(t) = , g(k)c 0 ; X, Ct) .k 1... X"t)) 5y + c) (2.4)

( (k)Zct) k.

+P( sup Ig(k)(x; X x g (0. X X(t)_k 1)>)

We first note that -Mm P Z t kt>) < E.

Also, since the possiblo values of X:(t) -k +1"'' X are countable, and
;" %

for all il, i2 .... ik EJ,

(k)"

P(X (t) i9  g(k) (0 X N(t)-k l" " X ,(t)) y+ X (t) -k +1 ='1 ... t) =k)"

is a constant bounded by 1, we have

lira P(Xt gP(k)( ; X X() + E)Nt- ' X'0 ) +

. =~P(X O  i , g k)(; Xk  1 .... +o y .'-

From a similar argument we have from (2.2) that

g(k) (k(t ) , ,X ( ' >

lim P( sup Ig (X; + 1 "''... ",t) p(k)( 0 . (t) k I ' " ,
t% IxV B "k- V k

x B.

5• .
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Thus, combining (2.3) and (2.4) %re have that '4

• '.4

.* *
lira P(XN  = Z ! _y) !-Px =i Z !5y + c) 2c.N- (t) M ,t ×

By similar arguments it can be established :ha'

P(XO  i ,  Z -!5y- F-) -2E: <i - i P(X : y .-

which completes the proof. C

Of course, the crici-I condition in t1,e application of theorem 2.-

to establish that if F <- then (X , Zn) converging implies (',(t) , 7(t

converges i- the condition that for all k

li P(IZ,- t _ I[> r. < ,,'

t-),o M

which implies that a bound can be selected that will apply for any k.

Nre now establish that for semi-.!arkov -roc',  e" , "' it .r, st ,

sracc with a regeneration Peint with finite expected return time, that

such uniform Y .yi 't.

let {Yn' Tn} be a well-defined "arkov reneval process on some normed

statu space S (for a mere detaild ,'m "itio , soc Cinlar (1969)).

, ,sunl, we define Y(t)Y and for an>' yE S, randtom variableal, e deine ~t) Yu t)

Z a.nd event A, 4e define

I (Z) =E(ZY 0  y), and Py (A) =P(AIY0 =y).

'.,,,

rU

4 . . . . . . . . . . .
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We then assume that there exists n point xoES where for all yc S,

P y(n! (Yn =x )) > 0, (2.5)

and for . =inf {n: Y X and T "n 0

Ex (", <X (2.6) .

E (T) <,i (2.7)
x

As is shown in Cinlar (1975), such regeneration points make the

behavior of semi-Markov processes quite tractable. In particular, we

have the following theoren.

"MFlOR,.I 2.4. Let (Yn, T) be a Markov renewal process on a norned space
- n n

S where there exists an x0ES satisfying (2.5), (2.6) and (2.7). Then
(2 ) (

for all E> 0, there is a '> 0 where for all 1.> 0

tI I- Y

PR00 . As is shown 1in Orey (1971), ;e have that P y(Y= X, i .o.) 1

for almost all y, and there exists a stationary probability measure

u&) where for all A-S,

(A) f~s~dx)P(Y I E Al Y x). (2.8)

4ft

'f.

,, . . .. ... . .. . . . . . . ... . ft., . , . .. .. . . ,* . , .
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Therefore, for almost all yE S,

lim Py(IIY'T(t) - IC> B) = lir P (!Y _ > R) ,

and since lir N(t)-- a.s., we need only consider

lir P Xo Y Nt)_ > B, '(t) tk).

Clearly x0 is a regeneration point, and therefore

P xo0 (ikYt) - I> (t, r. t) a k) =P 0 1Y" (t)-k I> , (t) a k, T> t)

0+ P oM Y ,t _k1 ', :(t) >k, 0 <-.'(t) - (T) < k) .

+ftp(IY t) _k I > B, ::(t) T , :(t)- (s) _kIT s)dP (T <_s). (2.9)

Since T is a time of regeneration, we h;ive,

o P  NO(t). -k > B, '(t) k, "(t) "'(s) >k) IT= s)dP (T <SS0 0  , t

0 Px ( 0 I (t s) k! > r, '(t - s) > ) P x T s). '

Therefore we have that (2.9) is a renewal equation, and if it can

be shown that .

'a"

- a. ~. . . . . . . . . . . . .
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(ip 0 t -Y, ~ N(t) k, T> t)

+ p YIIY >1 D, IN(t) k 0 5 N (t) -N(T) < k) (2.10)

is direcztly Riominn inteerable, then the basic renewal theorem will

yield lim P ~ IYNt -k> .()

Clearly, the first terni of (2.10) is directly' Pieriann integrable, since

which is nonincreasiap with fop (T> t)dt E IL <.

*Also P~ ( I I > 3, N (t) k, 0 !5-; t) -12) k

~P (T> t) + P ((t) - 4(T) <k, T :5t)
x x0 0

I1- P (N 7)'(T) 1, T !t).

Bccause P (t)~ (T) k, T 'it s nom:ncroa' -, if we can S o,
x
0

1(T> t) +P (:~-N(T) <1,, T ! t)JIt <-, we will have established

the directly Riornann iti'eirability of the secon.,! ~Crm of (2.10). First

noto CLiat Jp (T> t)dIt <-.
rox0
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Al so

0

000

= f0(f'p , (N(t - s) <k)dt)dP (T ') T

. . .. (f P, (T .,It ? T

Since E T<-, it clearly follows that E T <kE r <-, which establishes
x0x0 x0

the direct Riemann integrability.

I1lirefore, from the basic renewal theorem, we have that

lim P (Ii N(t)kI > B)
t- 0 N(t

= ( ) r)'LJoPx (lyr(t) I _ > B, N(t) -k, T> t)dt

SIP(I 'YN (t) - N , N(t) -k, 0-:(t) - N(T) <k)dt. (2.11)

r, establish the uniformity of the bound B, let us define

S= sup (t ii).
0K t-5T

Since E T <o, and Y <- a.s., we have from the dominated convergenrcc-
x-

thorem that lir Po , 1> t)dt 0.
0

..... ,.,...,,,. .................................................................................................... '.." € ,..............................................................
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Therefore, for all E> 0, there is a L> 0 where for all k> 0,

I',

J0 (lY.;:t) k II> B, (t) > k, T> t)dt sf (Y*> B, T> t)dt<c. (2.12)

Also,

P ( I Y,: I I> B, N(t) 2 k, 0 i' (t) - !j() <k)dt0, (t 0 k

< P (Y > B , 11: (t) > k , "(t) - (T) < k , 'r <5t) dt
0

t

f 0 fp(Y > B, ,:(t) k, N(t) -(s) < kT =s)dP (T !-s)dt. (2.13)

From(2.13) it follows that

Ox( N(t) _k I > P, N(t) _> k, 0 < N(t) - N(T) < k)dt

cotk-i
-f0 f"  o x (Y >B, (s)-k- j , ':(t) - "(s) j IT -),'P n(' < t

=0 s (Y > B, (s) k- jIT=s)P ("(t s) =j)dtdP (T <s)

k-1
ro PX ( >B, "(s)->k - jITs) t) : M j)dtj~dv. (T !5s). (2.14)

It is easily seen that

r' x ("(t) = j)dt = I Px (Tj +1 > t) -P x(' > t) Jdt

0 X() xn
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=E xoT. + - E T =x (T. - T) =fsp (x dy)ETX0J~l X x0  +1 j. (S0' d viy~'

where P (x0 , A)=P(Yn E AIYo x). From (2.8) it follows that

fcV(dx)fPn(x, dV)EyT1 = f,:(dx)ETl 1  .(xo)Ex T (the last equality can
y 0

be found in Cinlar (1975)).

Therefore, ii(xo)E (T - ) 5px )ET, and we once again find that
0 x 0

E x(Tj - T) -E T.
x 0

Therefore, from (2.14) we have that

'o Pxo(MY N(t) - k I> B, Y(t) >k, 0 M(t) -"(T) <k)dt

k *

k ,
(E T) I P (Y > B, -(T) j)

0 j=l 0

-(Eo T) P ) j) = (Ex T) <. (2.5)
o j= 0 0 0

Again by the dominated convergence theorem, for all E> 0, there is a

B> 0 where

(7x T) P PCY*> 2, %(T)-> j) <E.
o j= I0
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From (2.15) it then follows that for all k> 0,

P Y(t) _ k > B, -(t) - k. 0 - .f(t) - v(T) < k)dt < e

and therefore (2.11) coupled with (2.12) and (2.15) completes the proof. U

Of course, it must be pointed out that should {(X , Z n)} have a

point of regeneration the convergenc" of {X(t), Z(t)} follows directly

from the basic renewal theorem, and theorem 2.3 is unnecessary. This

situation is not the primary situation of interest. But even in this

case, as will be shown, the theorera can lead to a more satisfying

answer to the limit behavior of {X(t), Z(t)} than the generally intrac-

t" Ile integral answer which results from the basic renewal theorem.

The primary situation of interest is when {Xn , Z I has no point of
nn

regeneration, but has instead the following two properties

1) Zn (x) 20 a.s., Vn, Vx,

(2.16)
2) if x y, then Zn (X) Zn (y) a.s..

In this case, we will show that should {X, Zn } converge in distribution,

thc un for7 boundedness condition is satisfied 1b. bound:i c (Xn, Z} hy

another chain {Xn, I wit! a re,.cneration point.
nn

T11EOREM 2.5. If ( < {Xn , Z } {X Z} and if pronerty (2.16) is

valid, then

lir P(X(t) = i, Z(t) !5v) = lir {X i, z (0) 5y},
t-). nl- n

for all cont inui ity jPint14 S"'.

...
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PROOF. If there is no regeneration roint, then from theorem 1.1 we know

that for some i., and any x>O, ther is an .. >0, a P>A, an e>0, and an

r, where

= sup{D: lir P(X =i , z (X) < }.
n-- n 0 TI

(2.17)

(Xl i O ,I Zm(A ) > , Y X io . ... XlI iO 0 ~ ~ o > E-.

Assume without loss of generality that A = . 'e can then define two

new Markov chains {(X, nW )} and {X,, V n} where the transition probabilities

for {Xn n n a given for arbitrary set C by

P(X j CX 1 V r-x

P(X n=i , Zn CC IX 1 Zn_ -=y) if i z i0 or C n Fn, P "

P(X i0 , Z ECUFO, B] IX. j z l=y) if i=i n , BC (2.19)
n nn

0 if i= i n , C C O, B),

and those for {Xn V n are piven byn.,

P(X i, Vn CIX j
n n n- ' n-"

P(Xn- 1' Zn C n -1 =J Zn y) if i i0 or C r 0, BF= 0

(X i0n Zn Urf, C p X 1 =i Z n  v) if i=i 0 , 0cC (2 19)

0 if i=i n, C(n, P.n
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From the above definitions, we can see that and V are merely
n n

versions o, Z in which whenever Y. = i and Z _B, the value of Z isn 0 a

immediately changed to B and 0 respectively, and then the process is

restarted.

Clearly, fror! (2.16) it follows t.,at

V (x) <Z (X) x1 (X) a.s..-Zn (x aV ("

Let us define

= i n f { n > 1 : X = i 0 ,  Z n  < _ B } ,l

n n

Sillf fn> I X = n i , V 1 .,

From Cinlar (1975) , v.e nc-d only shok; that I < to have, (i!, !.)

{Xn' I'n } satisfying thcorer. 2.4. The otiher cOndition follos., since

E(io, B)N <.-implies tiere is a stationary proL'.hilit' :aesure with

P( I, B)> 0, in which case for T T1

F(i. B)T =  f (i , J FY (i, Y) 11 L !(i0, B)] <

Should {X , Z be er;,edic this would follow imodiately. since

I .(i ,  . ,:fo-tunato lv wit..:t a .-.-irre~uci!7ilitv
0'

condition (for defifitn i,, see Oroy (19'71) j the converp'ence of {X 2 }
71 n

is not sufficient fo-r crgcdicitv. lowever, it is cli-ar from (2.16)

that for any x < , and f'or x> B that
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0, X) (i o , Y) .

(2.20)

E E(io, x) w (io, x) v

Thus, it is sufficient to show that for some x> B, E(io, X)v<0

Let us first establish that {Xn, V I is ergodic. Since (iO, 0)n -

is a regeneration point, it follows from Tweedie (1975) that if

lim P(X =iO, V =OIX =i, Vo =z)> 0 for some (i, z), then {X, Vn }
- n 0'n 0 0o n

is ergodic. From (2.16) and (2.19) it is clear that

P(Xn=io, Vn=OIXo=i, Vo=z) >P(X =i Zn<B[Xo=iX Zoz).n 0 ' n ,

Therefore, we have {X1 , Vn I is ergodic since for all (i, z),

lir P(X =i O , Zn <BiXo=i, Zo=Z)> E.
n-*o n 0

From the ergodicity of {Xn  V it follows that E . N < Co.

n (i, ) v

It can be shown that

m
E o v iP (N=i)( p0) i=l (i O ,  0) -

+ i PC (N > Or) ( j , dxN >n)(r+Ftx - -
t v 0 (i 0) v <' X, V

From (2.17) it follows thatE <o implies that E ) for
j

almost all x in the non-empty support of P 0 (i , (B,")'"> ),

Which in turn implies that E (i< from (2.20).
(i, lB) w <
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Since E (io B)Nw <-5 we have that theorem 2.4 applies to {Xn , Wn
" ,

Therefore, for any c> 0 there is a B> 0 where for all k> 0

lira P(11,(t) -kl> B)

Since Z (x) !I" (x) a.s., this in turn implies
n n

which from theorem 2.3 ccrrlets the proof. I'

in t1e next section, we will apply these results to several

storage models to determine the convergence behavior in continuous time.

3. APPLICATIONS

To illustrate the applications of the theorems in the previous

section we will examine the behavior of several storage models. The

following notation will be necessary. For any random variable Y define

E 7 (Y) by

E (Y)= r ". E(YIX O = j)

where is the stationary measure of the chain {X n.

EXAMPLE 1. a.

Let {U n(i), n=O, 1, ... } be an i.i.d. sequence of real-valued

random variables, independent of {Xn } and of (U (j)), for j ti.
n n

. . . 2- , - .-r r
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Let E IUlI <-, and let E U1 <0. We then define our contents in storage
IT r

Zn (x) recursively by

Zn(x ) =max(O, Zn  l(x) LUn(Xn),!

and Z(X) x.
0b

Of course,

Z(t) : z W(x).

This model is based on an early model for dam theory proposed by

Moran (1954), which has shown itself to have diverse application (for

example, in waiting times for queueing theory). In the present form,

it has been examined by Lalanopal (1979), Puri (1978), Senturia and

Puri (1973, 1974), Puri and Woolford (1981), and Puri and Tollar (1985).

In its most general form, Pur and U1oolford (1981) had shown it converged

in distribution when appropriately normalized when E.U1 !0, and hypoth-

esized it should converge without normalization when E lT 1 <0. This

was shown to be true by Pur and Tollar (1985), who illustrated that

{Xn, Zn ) must have a renewal point (i0 , 0), in which case renewal theory

directly yields for T=inf {t> TI: X(t) =i0 , Z(t) =0},

lir P(X(t) =i, Z(t) c A)
t-*-

i OE ,  TO) Pi O)(X(t) = i, Z(t) E A, T> t)dP (T <-t).

(3.1)

=I
4, , ,., . .. . . , , ,. . ,. . . . ., .. . , . , . ,.. ..... ,. .. ,,.,,. , ,. ,,,.....,...,,,b * ~ * . ,.. ,..,
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Noting that

n n
Z n(x)= max (max ( iXi) X+ U~i) 32

we see that

Zn(0)= m ax U i U(Xj)). 
-

n
Since E 7TU 1 <0, we have from Chung (1967) that I U i(X .) 0 a.s., in

i =0

which case

(X0, Z n) -i.-,(X0, sup( 1 X) a.s..
-l-<j i=0

From theorem 1.1 this implies (X n z n converges in distribution if

we also observe from (3.2) that

n
sup IZ(X) -Z(0) -.max(0, Bi. Ui(Xi)).+o a.s..

Note that Z (x)2t0 a.s., and if x:!y, then Z (x) Z (y) a.s.. Asn n n
such, we have the following theorem as a consequence of theorem 2.5.

THEOREM 3.1. If 8<6 E ITU 1<0, then

lim P(X(t) =i, Z(t) !5y) P(X0  i, sup( U II(X .)) !5y)
t-* -1!5j i=0

for all continuity pointsofy

lt should be observed that this form is substantially more satis-

fying than the integral form of (3.1) obtained by Puri and Tollar (1985).

-a:-
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While this by no means allows us to actually compute the distribution

of the limit, Puri (1978) has found the Laplace transform of

sup( U.(X.)) for a two-state Markov chain {Xn}, which is a least a
05j i=l n
step in characterizing the limit distribution.

EXAMPLE II.

Let {(Un(i), V (i)),n=O, 1, ...} be an i.i.d. sequence of bivariaten n
real-valued random variables, independent of {Xn I and of {U n(j), Vn(j)I

for j ri.

We then define a proportional allocation scheme for our contents

in storage, Zn (x), recursively by

Zn (X) U n(Xn)'Zn - (x)+ Vn(Xn), (3.3)

and Z(x) x,

and again Z(t)= Z(t)(x).

Ihile this model has received no attention in the general frame-

work, it has proven to be of interest in the simpler case where we

define

Zn(x )  U. n. Zn - (X) + Wn

for ((U W )I an i.i.d. sequence (see, for example, Barnard , Schentkn,
no n

and Uppuluri (1967), Paulson and lfppuluri (1972), Vervaat (1979)).

,7-_
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Of particular interest is the observation that the techniques for

semi-Markov processes on arbitrary state spaces of Cinlar (1969), Athreya,-A

McDonald and Ney (1978a,b) and others have little chance for success on

this model, since there is no guarantee that the ?.,arkov chain {Xn Z (X)}
nP

is C-irreducible. As such, while one can show the Markov chain converges

by a reversal argument, and therefore apply theorem 2.5, ergodicity of

{Xn , Z (x)} cannot be demonstrated, so the typical starting assumption ofnn

semi-Markov processes is missing.

We first establish a theorem on the convergence of {X n Z (x)}.nn

THEOREM 3.2. If E gnIU I <0, E (RnIV l) <-, then
IT 1 iT

Jr P(X i, Zn(x) :5Y) =P(X0 =i, Z5y), for all continuity points y wheren-+, n n

= Vi(x.) IO tU.(X) <(1, a.s..
i=0 j=011

PROOF. From (3.3) it is easily seen that

n n n
Zn (x) =x r1 U.i(x i) +. Iv(x i) 1 u.(x.

il i=1 j=i+l .()

so

n-1 n-l i-I

Z (X) =x I U.CXi) + I Vi(X) I u.(X).
i=O i=O j= J

k k
Since £nI T1 U. (X.)I =i n!Ui(Xi)I, we have from Chung (1967) that

i=0 i=O 11

E Tniu I <0, implies

S"J.3

€ ,- ~~~~~~~~~~~. .... . ......... .. . .................... ,.... .... ..-.-... ?;:
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lin -Zn! n U.(X.) <0, a.s.. (3.4)

n--

Therefore,

n 2n

sup IZn (x) - Zn (0)1-BE 0 i(X )1-0 a.s.,

x I-B i

so condition (1.4) is satisfied. Therefore, from theorem 1.1 we need

only examine Z (0).

From (3.4) we have for all E> 0, there is a 6, 0 <6 <1, and an

N where for n>N,

n-l
P(ZnI T U.(X-)I> nen6, V n>N) -

i=O

so

n-l
iU(Xi),> 6n, n>N) <c. (3.5)P( IT U )<S

i--O

There fore,

P(IZm(0) - Z(0) > E, Vin> n > N)

wi-1

!-P( I IVi(Xi).I IT U.(Xj)I> E)
i=n j=0

i =0

n + n
where the last inequality follows from (-,.S) and from {X n  having the

stationary distribution.

..... . . . . . ... . . .. .- .. -. . .... . . . -.. , ..-a
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For any x> 1,
,a.

CD CO C*

1 PCIVi(Xi)I> x') = T. I P IVi(J)1> x )
i=0 jcJ i=0

OD

=P . 0P(Cni(j) I> Jinx)
jgj ji=O 1

- . nx)-(I +E(Zn V (J)1)

jJ (1J C1I 1() )I

(enx)-l(I+ F (ht jlI ) + <.

As such, by the Borel-Cantelli lcrnma, for any x> 1

P(Iv i (x.) I> xi i.o.) = 0.

Therefore, for any x<6 since x6 <W,
i =0

I I IV i i) 1
i -  xi I <G, a.s.,

i=0 i =0

which implies that I IV.(X) 16 <-, a.s..
i=O "'

As such, we fiind ::rom (3.6) that for sufficiently large,

P(Z m(O) - Zn (0) 1> c, > " nN ) < c

w we have that Zn (0) converges almost surely to some random

variable Z, which co:vpletes the proof. U
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To complete the analysis of Z(t), we once again appeal to the

* results of the previous section.

THEOREM 3.3. If 6 <-, E CnIU I <0, E (,Pr V I)<-, then

z V X TI 1 <-, 1~.

i-

i=O j=O'

PROOF. hiile theoremi 2.5 cannot be appealed to directly, clearly

n an
IZn (x) 1 :W n x) lx 1 1 IU.(XijI+ IV.(XiI 11 IliJ.(X.)I.

where {X, , O(i) is also M;z.rV.ov chiin. Since r-L &IU I <0,

E.1(.Cn I V I+4<-, theorem 3.2 yields that (Kn, In (Il) (X, W) in

distribution.

Also, property (2.16) is clearly satisfied for IV(li) Therefore, the

proof of theorem 2.5 is sufficient to establish that for any c> 0, and

all k> 0, there exists a B where

P P( Iz, t - k1 > B) !5lim P(II.T) k >-

and therefore theorem 2.3 can be applied to complete the proof. I
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4. CONCLUSION

In most cases when a storage nodel is defined on a T11arkov renewal

process, the convergence of even the discrete time version cannot be

determined from general .'arkov chain arpuments. As such, some tech-

nique like reversing the process must be used. Therefore, if the con-

ditions in section 2 are valid, we essentially get the convergence of

the continuous time process for free. Of course, it is clear that

conditions such as (1.4) and (2.16) can be extended directly to multiple

dimensions, and the results will remain valid. However, for more general

spaces, the counterpart to (2.16) is not readily apparent to us at present.

Crucial to the usefulness of the results are ,.nditions to guarantee

the uniform boundedness of ZN(t) - k" The technique of bounding (X n , Z n(x))

by another tarkov chain with a regeneration point seems very powerful.

The conditions given can clearly by generalized. For example, if it can

be shown for a measure 7 that ,r is invariant with respect to {X Z n(x)},n'n

then we need not have Zn(x):>_O in (2.16) for the results to still be f

true. It should be noted that it seems that Z (x) >_ 0 should b; unncc-
n

essary in (2.16) even under the presented conditions. However, we

have been unable to show that this is the case.

Certainly there must be methods other than the bounding arguments

used which could be considered in establishing the uniform boundedness

of ZN() _ k Such conditions would be an area of major interest in

the applicability of the Prcsent work. APt of course, perhaps uniform

boundedness is not the only condition which will let a theorem like

theorem 2.3 be valid.

d . , ~ . . . . .. . . .. . . . . . . . . . . . . . . . . . . . ..
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Of major interest would be to eliminate the underlying denumerable

state semi-arkov process that was so essential to the present work,

and instead specify a revcrsing techniquL, for se'ri-Ilarkov processes on

arbitrary state spaces with no such structure. Hlowever, even if we

can specify a way to reverse the Markov chain, we have no corresponding

version of lemma 2.2 upon which to "build" the reversed process in

continuous time. Therefore, at present, we see no hope of this tech-

nique being generalizable in this direction. Except in some very

artificial scenarios, it seems that establishing tt.e equivalent of

lemma 2.2 is substantially more difficult than establishing the be-

havior of the process directly. However, it is certainly possible

that techniques different than those used here could make the method

applicable.

-S

.
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